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We consider the continuous separation process of a monodispersed suspension flowing 
axially through a rotating circular cylinder. This stationary problem can be regarded 
as a basic flow case of rotating mixtures in conjunction with previous studies of time- 
dependent flows like spin-up and batch settling in a cylinder. The ‘mixture model’ for 
two-phase flow is used to formulate the problem, which is solved in the range of small 
Ekman and Rossby numbers by asymptotic analytical methods and by a numerical 
code. The gradual separation of the axially injected suspension is manifested as a 
stationary stratification of the mixture which induces a swirl component of the velocity, 
in analogy with the thermal wind in the Earth’s atmosphere. The presence of the 
azimuthal motion and induced secondary flow due to Ekman-layer pumping clearly 
influences the character of the stratification. Analytical and numerical results are in 
excellent agreement. 

1. Introduction 
Within the theory of rotating mixtures several basic, time-dependent flow fields have 

been considered in the literature. In a majority of those papers a homogeneous 
monodispersed suspension of spherical particles is at an initial instant assumed to be 
at rest relative to a rapidly rotating container. The subsequent time-dependent 
separation process has been studied in some detail. A selection of these papers is briefly 
mentioned here. Batch separation in an infinite circular cylinder was studied by 
Greenspan (1983) and Schaflinger & Stibi (1987) and the effect due to a finite cylinder 
was investigated by Ungarish (1986, 1988 a). Geometrical enhancement of centrifugal 
separation due to inclined endcaps was investigated by Greenspan & Ungarish (19854, 
Amberg et al. (1986) and Ungarish (19883). The effect of meridional barriers on batch 
separation in various geometries was studied by Greenspan & Ungarish (1985 b), 
Schaflinger, Koppl & Filipczak (1986)’ Schaflinger (1987), Amberg & Greenspan 
(1987), Greenspan (1988) and Dahlkild & Greenspan (1989). The spin-up from rest of 
a mixture in a straight cylinder was analysed by Ungarish (1990, 1991) for the cases of 
heavy and light particles and by Amberg & Ungarish (1993) for light particles. The 
most recent review on centrifugal separation is given by Schaflinger (1990), to which 
the reader is referred for a thorough study on the subject. Fundamentals of separation 
are also given in a textbook by Ungarish (1993) where much of the work referred to 
above is treated. 

In industrial applications centrifugal separation is often a stationary process where 
the mixture is fed into the separator and the separated products collected continuously. 
Amberg et al. (1986) considered the continuous separation of a dilute suspension in the 
narrow gap between the conical plates of an industrial centrifugal separator, and this 
seems to be one of the few theoretical studies on continuous centrifugal separation of 
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a two-phase mixture from first principles of fluid dynamics. Dahlkild, Amberg & 
Greenspan (1992) analysed the continuous flow in a centrifugal spectrometer, but only 
traced single sedimenting particles in a single-phase flow field. 

Experiments on centrifugal separation problems are rare, probably owing to the 
technical difficulties of making measurements in two-phase flows. Of the studies 
mentioned above only the paper by Schaflinger et al. (1986) presents quantitative 
experimental results. Otherwise only visual demonstrations are presented by the 
authors, which nevertheless give an illustrative qualitative verification of the analysis, 
as, for example, Amberg & Greenspan (1987) and Ungarish (1991). 

The objective of the present work is to complement the very few analytical studies 
on continuous separation processes. We study here the centrifugal separation of a 
mixture, continuously fed at the bottom of a circular cylinder and led axially towards 
the outlet at the top. The problem is sufficiently simple to allow an analytical study but 
at the same time it contains several basic features of a stationary separation process. 

A special feature is the analysis of the Ekman layers which appear at boundaries with 
either suction or injection of fluid. There seem to be no linear theories available in the 
literature for such flows, but von Karman’s (1921) similarity solution of the fully 
nonlinear flow over a rotating disk has been extended by several authors to include the 
effects of suction or injection at the disk. Stuart (1954) considered the case of strong 
suction at a rotating disk and obtained a series solution in powers of the inverse suction 
parameter. Rogers & Lance (1 960) obtained numerically computed similarity solutions 
in the case of suction at a rotating disk with the fluid also rotating far away from it at 
a different speed. Additional aspects of flow over a rotating disk with suction or 
injection and the fluid non-rotating at infinity have been treated by various authors (see 
e.g. Goldshtik & Javorsky 1989). However, to obtain the oscillating behaviour typical 
of Ekman layers it is necessary for the fluid to be rotating far away from the disk also. 
In contrast to the nonlinear similarity solutions discussed above the approach here is 
a straightforward linear boundary-layer analysis in which the velocity component 
normal to the boundary, representing the injection or suction of fluid, are 
approximately constant through the boundary layer. As the strength of the 
suction/injection is of the same order of magnitude as the tangential velocity difference 
between the boundary and the fluid far away from it, convection of momentum in the 
direction normal to the boundary are significant. The secondary Ekman pumping effect 
is reconsidered accordingly. These results for the Ekman layer are of a general nature 
and not restricted to two-phase flow applications. 

There is also an urgent need for numerical prediction of two-phase flow fields, 
especially in the light of the experimental difficulties. Commercial computer codes are 
at hand but the output can be difficult to interpret without very detailed knowledge of 
the software and long experience of running the code. To obtain confidence in a two- 
phase code, verification of the results in cases where an analytical solution is tractable 
for comparison is especially important, since models of two-phase flow vary and can 
even be unsatisfactory. For the case of spin-up from rest of a mixture of light particles, 
Amberg & Ungarish (1993) obtain good agreement between the analytical and 
numerical solutions of the ‘mixture model’ equations for two-phase flow (see Ishii 
1975). In our work their code is slightly modified to deal with the continuous 
separation process studied here, the outcome of which constituted an additional 
successful test of the code. 
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2. Formulation 
Centrifugal separation of a mixture, consisting of a Newtonian liquid phase and a 

dispersed phase of spherical particles, all with the same radius a*, is assumed to take 
place in a straight circular cylinder of radius r,* aligned with the rotation axis e, as 
sketched in figure 1. At the bottom of the cylinder, rotating at angular velocity a*, a 
homogeneous mixture is uniformly injected and at the top, a distance H* above the 
bottom, partially separated mixture and fluid are ejected at the same volumetric flow 
rate. In the mathematical formulation we utilize the ‘mixture model’ of two-phase flow 
(see Ishii 1975) where the mixture is treated effectively as a single Newtonian fluid. The 
mass-averaged velocity of the mixture denoted by q* = (u*, v*,  w*) should be 
distinguished from the volume-averaged velocity j*  = (j,*,j,*,j,*) where the coordinate 
directions (er ; e,; e,) are shown in figure 1. Variables of the continuous and dispersed 
phases are denoted by subscripts C and D respectively. The relative velocity between 
the phases is given by 

If the particle volume fraction is a, the mixture density is then 

q; = q; - q;. (2.1) 

p* = .p;+(l-a)p;. (2.2) 

The effective mixture viscosity was assumed to be an empirically determined function 
of the particle concentration of the form 

P* = PEP(.). 
Here we use 

~ ( a )  = (1 - c I / o I ~ ) - ~ . ~ ~ M ,  aM = 0.66. 

Variables are non-dimensionalized according to 

where non-dimensional quantities are without asterisks. P is here the non-dimensional 
reduced pressure. The relative density difference e and the particle Taylor number p are 
dimensionless parameters defined by 

and the Rossby number Ro will be specified later. Useful relationships between the 
mass- and volume-averaged velocities are given by 

The stationary equations 
with the cylinder are, for 

of mixture theory in a coordinate frame (e?; e,; e,) rotating 
conservation of mixture and dispersed-phase volume, 

0.j  = 0, (2.9) 
0- j ,  = 0, (2.10) 
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FIGURE 1. Sketch of geometry and of location and thickness of shear layers for small values of 
the Ekman number E. 

and for the momentum balance of the mixture 

€01 
(1 +.a) (Ro(iV(q.q) + (V x q) x q) + 2e, x q) = - V P + - r  

Ro 

where the Ekman number 
E = vF/O*rz2 (2.12) 

is based on the kinematic viscosity of the continuous phase, vz. The equations are 
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completed by a constitutive law for the relative velocity. An approximation appropriate 
for our purpose here is 

p(a)qR = - s ( l - a ) e , [ R o 2 ( ~ V ( q ~ q ) + ( V x q ) x q ) + R o 2 e , x q + e , x ( e , x e , r ) ] ~ e ,  
(2.13) 

where s = lel/t.. The right-hand side of (2.13) models the effective buoyant ‘centrifugal 
force’ on the particles as modified by inertial effects due to the motion of the mixture, 
and the left-hand side is the Stokesian drag force on the particles. Gravity is neglected 
because of the rapid rotation of the cylinder. 

Since in most applications the particle Taylor number /3 is usually very small, the 
diffusion stresses due to the relative motion of the phases, represented by the last term 
in (2.1 I), are neglected in the analysis. Order-one effects of /3 on batch separation 
problems have been treated by e.g. Schaflinger et al. (1986) and Dahlkild & Greenspan 
( 1989). 

No-slip boundary conditions for the velocity field are assumed on the vertical as well 
as on the horizontal boundaries. The conditions at the top and bottom boundaries are 
thus similar to those of a porous wall with a specified velocity component normal to 
the boundary. Generally for an axisymmetric problem then 

q(r = 1) = 0, (2.14) 

e, x q(z  = 0)  = e, x q(z  = H )  = 0, (2.15) 

w(z = 0) = w(z = H )  = win(r), (2.16) 

where H is the non-dimensional height of the cylinder; win(r) is the prescribed non- 
dimensional velocity distribution of the mixture injected at the inlet, identical to that 
of the fluid sucked out at the top. One may note here that (2.8), (2.13) implyj, = w even 
for non-zero particle volume fraction. 

The particles entering the cylinder at the bottom were assumed to be well mixed in 
the fluid to a homogeneous suspension with volume fraction 

a(r ,z  = 0)  = ao, (2.17) 

whereas the concentration at the outlet followed from the solution. As no particles can 
penetrate the sidewall one must also requirej,.e, = 0 at r = 1. It follows then from 
(2.7), (2.14) and (2.13) that this is possible only if either a = 0, i.e. there are no particles 
at the wall or the particles are at maximum packing CI = aM for which q,.e, = 0. The 
natural boundary condition for the volume fraction at the vertical sidewall is therefore 

(2.18) 

since for particles heavier than the fluid settling towards the wall, a sediment layer will 
form, presumably at maximum packing for r = 1, and in the case of light particles 
settling inwards away from the sidewall, an outer region of clear fluid must appear 
adjacent to the wall. 

As the mixture enters the cylinder the region of clarified fluid, or the sediment of 
settled particles formed, is separated from the mixture by a kinematic shock across 
which the particle concentration jumps discontinuously. Let the locus of this shock 
interface be given by 

z = C(r) (2.19) 
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and let the upward-pointing unit normal be 
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e, - Z ( r )  e, 
n =  

(1 +P): . 
(2.20) 

Then the stationary shock conditions at the interface are 

[qxn] '= 0,  b.n]'= 0,  b,.n]'= 0, (2.21 u-c) 

R o [ ( ~  + E E ) ( ~ S ~ ) ~ ] ?  = -[P]T+E[n.l7*n]T, 

Ro[(~ +t.a)(q.n)n xq]? = E[n XZI.~]'  

(2.21 d )  

(2.21 e) 

where the stress tensor is 
17 = p(a) (Vq + V q f ) .  

These shock conditions express continuous velocity tangential to the surface, 
conservation of mixture volume, conservation of particles and conservation of mixture 
momentum in the normal and tangential directions respectively. Alternatively (2.2 1 b) 
can be rewritten to express conservation of mixture mass 

[(l +ea)q.n]' = 0, (2.21f) 

where (2.21 c), (2.7) and (2.8) have been used. The solution of the governing differential 
equations with boundary conditions thus include the determination of an interior 
boundary for which (2.21 a-e) are provided and also serve as matching conditions for 
quantities on either side of the interface. To fix the position of the shock it was assumed 
that at z = 0 the interface was attached at r = 1 since the mixture was assumed well 
mixed at the inlet, i.e. 

C(r = 1) = 0. (2.22) 

This completes the general formulation of our problem. The analyis focuses on the 
case of light particles. For heavy particles a more sophisticated model for the sediment 
motion would probably be required for a realistic description of the flow in that region. 
It is known, for example, that particles in the sediment may resuspend owing to shear- 
induced migration. Experimental evidence as well as mathematical models of this 
phenomenon are at hand, see for example Leighton & Acrivos (1987a, b), Nir & 
Acrivos (1990) and Phillips, Armstrong & Brown (1992), but need to be explored 
further for simpler flow configurations before application to more complicated cases. 
The sediment motion, which really deserves a separate study, is thus left outside the 
scope of this paper. 

3. Asymptotic analysis 
The problem formulated in the previous section was studied in the limit of small 

Ekman number, E < 1. As discussed earlier p was also assumed small but considered 
to be of order one as E+O. The relative density difference E was also assumed 
asymptotically small according to 

I€( = CEt 4 1, (3.1) 
where c = O(1). In addition to the axial throughflow the forcing mechanism of the flow 
during separation is buoyancy due to the density difference between the phases. A 
suitable Rossby number for the flow is therefore given by 

RO = 1 ~ 1  1 (3.2) 



Rotating axial flow of a continuously separating mixture 325 

which gives a balance in (2.11) between Coriolis and buoyancy forces if the particle 
volume fraction is considered O( 1). The magnitude of the vertical velocity, Ro win SZ*r,*, 
was chosen such that during the time a particle sedimented radially a distance - r,* at 
a speed N IslPQ*r,* it would be advected axially a distance N H*. This was made 
clearer by defining 

(3.3) 

which is used instead of win for the axial velocity at the inlet. 

expansion in Ei of the form 
Formally the problem is solved by a perturbation procedure where a power series 

y(r, Z)  = yo  + E$I~ + O(E)  (3.4) 

is assumed for each of the dependent variables y .  As is well known from the theory of 
rotating fluids, the inviscid limit E --f 0 is singular and the procedure must involve 
splitting the solution into asymptotically thin viscous boundary layers and larger 
regions of inviscid flow. Figure 1 shows the location of the various boundary layers 
that appeared in our case. At the horizontal boundaries Ekman layers of thickness 
N Ek formed, by which the inviscid interior velocities were adjusted to the assumed no- 
slip condition at the wall. Ekman layers also appeared on each side of the kinematic 
shock which seyarated two different inviscid flow regions. Vertical shear layers of 
thicknesses N Ez and Ea formed not only on the sidewall but also at the radial position, 
rSh say, where the kinematic shock reached the outlet at the top. These free shear layers 
were viscous transition layers which smoothed out the discontinuous angular velocity 
between the dynamically different inviscid flow regions on either side of r = rsh. The 
Ekman layers were essential for the matching procedure with the inviscid regions 
whereas the vertical boundary layers were of passive nature and therefore not treated 
in detail. 

In the subsequent sections we consider first, in $3.1, the inviscid interior flow from 
which also follows the basic stratification of the mixture. The matching to the Ekman 
boundary layers, required to completely determine the flow of the interior, is given 
special consideration in 5 3.2 with respect to the unconventional Ekman-layer structure 
due to the axial flow. Results for the complete interior flow are given in $4. Section 3.3 
contains an analysis of the first-order effects on the concentration field due to 
secondary circulations in the interior. Results of the asymptotic analysis are compared 
with the numerical results in $5. 

3.1. The inviscid interior 
Neglecting viscous terms the governing equations (2.9)-(2.11) with (2.8) and (2.7) give 
to zeroth order in Ei 

v.qo = 0, (3.5) 

qo * vao  = - pv * (aO( 1 - a0) 4:). 

2e, x qo = - VPO + morer, 

where s = - 1 for light particles. For the relative velocity, (2.13) to zeroth order yields 
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Since there is no change in the axial velocity in the Ekman layers to lowest order the 
appropriate boundary conditions for the inviscid flow outside the boundary layers at 
the in- and outlet are 

wo(z = 0)  = wo(z = H )  = win(r) = pHW(r). (3.9a, b) 

The solution of (3.5) and (3.7) with (3.9) gives 

uo = 0, (3.10) 

a --Po = 0,  
a Z  

wo = PHW(r), 
where (3.12) implies 

a 
--Po = G(r). 
ar 

(3.12) 

(3.13) 

(3.14) 

To obtain the degrees of freedom necessary for the inviscid solution to adjust to the 
shock conditions, the arbitrary function G(r) for r > rSh formally had to be split into 
two parts, G+ and G- say, representing respectively integrations of (3.12) above and 
below the clear fluid-suspension interface. However, it follows from the shock 
condition (2.21 d)  to zeroth order that the pressure is continuous across the interface, 
whereby Gf = G-. Note here that the interface is embedded within two Ekman layers 
which really requires the shock conditions to be evaluated with the boundary-layer 
solution at the shock. The procedure above could be justified though, as the boundary- 
layer correction to the pressure in Ekman layers did not change to lowest order. Since 
the boundary-layer correction of the normal velocity component was also zero to 
lowest order, the same procedure could be applied for (2.21f) to zeroth order to 
confirm that the inviscid solution above conserved the mixture mass flow normal to the 
shock. The properties of the Ekman layers stated above are derived in Appendix A. 

Without further knowledge of the pressure gradient and the azimuthal velocity 
component the analysis continued with the determination of the concentration field 
ao(r, z) ,  which also involved the determination of Z(r), the vertical position of the clear 
fluid-suspension interface. For convenience the conservation equation for the particles 
to zeroth order (3.6) with (3.8) is written in characteristic form 

- r o = - - {  spr" d a(1-a)' } I  , d 

dz wo da A4 a=ao 

(3.1 5 a) 

(3.1 5 b) 

where ro(z) is the characteristic path to zeroth order. A solution to (3.15) of the 
following form was found 

(3 .16~)  

(3.16b) 
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FIGURE 2. (a) Volume fraction of light particles versus the axial coordinate and (b) the shape of 
the clear fluid-suspension interface in the case of uniform axial flow for a,, = 0.05, W = 0.7, 1.0, 
1.3. 

where ao is used as a parameter to obtain the characteristic path (r', z'). The starting 
point of the characteristics is at the inlet 2: = 0,O < r: < 1 where, by (2.17), a: = a0. 
Characteristics also originate at r: = 1,O < zt < H ,  for which it is sufficient to know 
that they cross the characteristics originating at the inlet and thus yield the value 
a = 0 for light particles on the upper side of the kinematic shock. It might be of some 
interest to mention that there are some similarities in the result (3.16) and the work by 
Ungarish (1991) on the spin-up of a suspension. 

For the case of a uniform axial velocity, so that W is independent of r, the volume 
fraction is also independent of the radial coordinate and obtained directly from 
(3.16b). Figure 2(a) shows the concentration for light particles for a. = 0.05 and 
different values of W. For light particles, then, the concentration gradient is in the 
positive axial direction and increasing for smaller axial velocities owing to the increased 
time spent by a mixture fluid element in the cylinder. Following a mixture fluid element 
from the inlet and through the cylinder in the case of uniform axial flow, the time- 
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dependent variation of the particle volume fraction would be completely analogous to 
that of centrifugal batch settling of a homogeneous suspension. The approximation for 
dilute suspensions obtained from (3.16b) is 

(3.17) ao(z) = aoe-2sw, 
z / H  

which is also similar in form to the time-dependent case. 

kinematic shock for which (2.21 c) yields 
The continuous stratification of the mixture extended up to the position of the 

(3.18) 

to zeroth order. The velocity field in the first term can be evaluated with the zeroth- 
order inviscid solution only since the Ekman-layer correction at the shock of the 
normal velocity component is zero to this order (see Appendix A). For light particles 
a+ = 0 and (3.18) with (3.10), (3.11) and (2.20) gives 

(3.19) 

with zeroth-order superscripts omitted. The straightforward interpretation of (3.19) is 
that the interface is obtained by tracing a sedimenting particle convected in the axial 
velocity field from the outer rim of the inlet to the outlet. In the dilute limit a- = 0 an 
integral of (3.19) is easily obtained. For non-dilute suspensions, though, (3.19) must be 
combined with the solution for the volume fraction (3.16) evaluated at the shock 

The complicated argument in W is the local radial position of the characteristic path 
during the integration from the inlet to the position of the shock. Equation (3.19) with 
(2.22) and (3.20) are sufficient to determine Z(r) and a-(r) to zeroth order in Ef for any 
axial velocity profile W(r). 

The solution procedure is greatly simplified in the case of a uniform axial flow for 
which an explicit integral of the particle volume fraction at the interface can be 
obtained : 

a-(r) = ao/r2. (3.21) 

The axial position of the interface C(r) is then given by (3.20), for which the dilute limit 
approximation can be derived from (3.17) with ao = a-(r) and z = C(r) as 

Z(r) = HWln(l/r). (3.22) 

The interface shape obtained in the non-dilute case is shown in figure 2 (6) for the same 
parameter settings as in figure 2(a). As expected, the clear fluid region was larger for 
smaller axial velocities. The curved shape of the interface was caused mainly by the 
decreased settling velocity at smaller radii but also by the increased hindering effect at 
larger particle concentrations. 

In the preceding analysis the determination of the concentration field and the 
position of the clear fluid-suspension interface to the first approximation are obtained 
without knowledge of the complete velocity field. Only the inviscid axial flow is needed 
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which extends unchanged through the cylinder. The azimuthal motion on the other 
hand is an effect of the continuous stratification of the mixture and the sudden density 
change across the shock. Differentiation of (3.1 1 )  yields 

(3.23) 

which is analogous to the 'thermal wind equation' for a baroclinic atmosphere (see e.g. 
Pedlosky 1987, p. 42). The continuous stratification thus induces a vertical gradient of 
the azimuthal flow. Similarly the density jump at the clear fluid-suspension interface 
results in a discontinuous variation of the inviscid azimuthal velocity across the 
interface : 

[vO]l' = s+rao(Z(r)). (3.24) 

To complete the determination of the azimuthal velocity, the inviscid problem must be 
considered to next order in E:. An equation for the reduced pressure gradient G(r) then 
results from the compatibility conditions of the secondary inviscid flow with the 
various Ekman layers. 

To first order in Ei the inviscid azimuthal component of (2.11) with (3 .13)  is 

a 
a Z  

c,8H W(r) - uo + 224' = 0 

which with (3.23) yields 
a 

u1 = sc/?HW(r)ir - ao 
aZ 

(3.25) 

(3.26) 

It is thus found that the mass-averaged radial velocity component of the inviscid 
interior flow is negative which is rather surprising since during separation one would 
expect an outward radial massflow which is the direction of the centrifugal force. 
However, this result is caused instead by the conservation of total angular momentum 
of a mixture fluid element followed through the container. For, the increasing 
azimuthal velocity according to (3.23) corresponds to an increasing angular momentum 
which thus must be compensated for by a small inward displacement of the mixture 
fluid element to maintain the same total angular momentum. This is quantified for the 
phase-averaged radial velocity by (3.26). 

In terms of mass-averaged velocity components the mixture continuity equation 
(2.9) to first order with (3.26) gives 

l a (  4 aZ 1 a -wl+-- scpHW(r)--ao = sc/3V.(a0(1- 
i 3 ~  r a r  

(3.27) 

The source term in the mass conservation equation (3.27) shows that a mass element 
of the mixture expands owing to the separation of the phases. As the radial mass flow 
obtained in (3.26) typically corresponds to a contraction of the fluid in the radial 
direction, the whole flow divergence is manifested as a vertical stretching of fluid 
elements. The corresponding axial velocity thus directs the mass flow towards the 
boundaries where it is redirected outwards by the divergent Ekman layer flow. Using 
(3.6), (3.27) can be integrated to obtain the vertical component of the secondary flow 

(3.28) 



330 A.  A. Dahlkild and G. Amberg 

Here the arbitrary function D(r), obtained from the integration, is, similar to G(r),  split 
into D+ and D- for r > rSh. The new parameter h introduced in (3.28), 

(3.29) 

is for batch settling problems, as in Ungarish (1986), and is usually interpreted as the 
ratio of the separation time to the spin-up time in the cylinder which might be 
somewhat confusing here since the process is stationary. A more appropriate 
interpretation would be the relative strength, per unit length in the azimuthal direction, 
of the typical Ekman layer mass flux, Ro O*r,* E b t ,  and the phase-averaged radial 
mass flux induced by the separation, 1el2/3Ps2*r~ H*, as estimated from (2.8). (This 
interpretation should apply also to more generally formulated stationary separation 
processes than the one studied here.) 

For the case of a uniform inlet profile we may summarize the inviscid solution for 
the azimuthal velocity as 

zio(r, z )  = i(G(r) -sao(z) r )  (3.30) 

and the meridional velocity components including the secondary flow may be 
simplified to 

w(r, z )  = PHW( 1 - eia0(z)) + EiD(r), (3.31 a)  

r ao(z) (1 - ~ O ( Z ) ) ~  
u(r, z )  = - 1 ~ 1  P- 

2 IIL(aO(z)) 
(3.31 b) 

D(r) was determined together with G(r) from the equivalent boundary conditions of the 
inviscid flow obtained from the analysis of the Ekman layers. 

3.2. Matching to the Ekman layers with suction or injection 
The Ekman layers are not of standard type as they appear within an axial flow of the 
same order of magnitude as the flow in the Ekman layer itself. Ekman-layer pumping 
velocities, necessary for the matching procedure to the interior, in the case of rigid- 
body rotation outside the Ekman layers might be obtained from limiting values far 
away from the disk of the similarity solution of Rogers & Lance (1960). However, such 
a procedure would be quite inconvenient and much too complex in our case, nor was 
it necessary to serve our purposes in the parameter regimes considered. We consider for 
that reason the modified linear Ekman-layer flow at a surface, z = Z(r), with upward 
pointing normal, I ,  say, with either suction or injection. The Ekman layers above 
z = 0 and on the upper side of the kinematic shock are thus of the injection type 
whereas the Ekman layers below z = H and on the lower side of the shock are of the 
suction type. The analysis of these flows is only briefly outlined here. The details are 
given in Appendix A. 

It was found that the axial velocity as well as the particle volume fraction are 
unchanged to zeroth order through the boundary layer. A linear boundary layer 
equation was then derived that included a term representing axial convection of 
momentum through the Ekman layer. The strength of this effect was measured by the 
ratio of the injection velocity and the Ekman-layer viscous diffusion velocity 

(3.32) 

As this was assumed to be an order-one quantity, considerable modifications of the 
Ekman-layer flow appeared for non-zero values of this ratio. Figure 3(a) shows a 
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FIGURE 3. Divergent Ekman-layer flow at a horizontal boundary with suction or injection for rigid- 
body-rotation inviscid flow, W Y ,  as [+ co ; r = 0, f 2.0. (a) Azimuthal velocity component. (b) 
Secondary vertical velocity component. 

graph of the normalized azimuthal velocity component versus the boundary-layer 
coordinate I; for different values of r at a horizontal boundary. Positive and negative 
signs on r are used to indicate respectively injection and suction of fluid at the 
boundary. For r = 0 the ordinary Ekman-layer solution was retained with boundary- 
layer thickness 8, - E&/Z-ez)i, but for T > 0 the Ekman layer was wider and with 
pronounced oscillations. For r < 0 it appeared thinner and with suppressed 
oscillations. For large values of Ifl the boundary-layer thicknesses of the injection and 
the suction layers were respectively 8, - EiT and 8, - &p,/(TZ.e,). The normal 
velocity component obtained, which was needed for the matching procedure to the 
secondary inviscid flow, is shown in figure 3 (b). The value approached for large values 
of the boundary-layer coordinate, which is also a measure of the mass flow in the 
Ekman layer, increased/decreased for a pronounced injection/suction rate. 

The derivation of the compatibility conditions for the secondary inviscid flow that 
appear from the matching procedure to the boundary-layer flow is given in Appendix 
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FIGURE 4. The relative strength, B[y(x;  e,)], of the Ekman-layer pumping in a divergent Ekman 
layer with suction or injection versus injection rate x. 

B. The boundary-layer analysis is valid for arbitrary axial velocity profiles but the 
matching was performed in detail only for the case of a uniform inlet profile. 

At the horizontal boundaries the boundary conditions obtained for the secondary 
vertical velocity component are 

, i  a 
w'(z = 0) = &u(~,,)]~--((Yv"(z = O))B 

w'(z = H) = -$,u(a~)]~--(ru"(z = 

r ar 

, I  a 
r ar 

(3.33) 

(3.34) 

where subscripts 0 and H denote evaluation at z = 0 and z = H respectively. The 
definition of B is 

(3.35) 

and the complex function y is defined by (A 9) of Appendix A. A graph of B[y(x;  e,)] 
versus x is shown in figure 4 which thus, according to (3.33) and (3.34), gives the relative 
change of the Ekman-layer suction for a given flow divergence of the outer flow. It 
is also a measure of the relative mass transport efficiency of the Ekman layer. For 
x = 0, corresponding to the limit r = 0, we have y = 1 -i and thus B[y] = 1 so that 
(3.33) and (3.34) reduce to the ordinary Ekman-layer compatibility relations. With 
suction at the boundary, corresponding to a negative value of x in figure 4, B and the 
secondary inviscid flow were smaller in magnitude and approached zero for strong 
suction. A reinforced secondary flow was obtained with injection at the boundary 
where B approached the line B = x for large values of x. 

In the region r > rsh = (a,/.&)$ the inviscid solution must also be compatible with 
the Ekman layers at the clear fluid-suspension interface. The first-order expansion of 
(2.21f) together with the Ekman-layer solution implies that for the vertical velocity 
component of the secondary inviscid flow 

[w']? = . (3.36) 
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The boundary conditions (3.33), (3.34) and (3.36) can now be used with the inviscid 
solution to determine the functions G(r) and D(r). However, as the conditions above 
yield a differential equation for G(r),  an additional requirement has to be imposed on 
the flow. This is obtained from the global conservation of volume in the cylinder. Since 
the axial in- and outlet profiles are identical the volume flow across any cylindrical 
surface centred around the rotation axis must equal zero, i.e. 

J,  = 2nr j.e,dz = 0. 1: (3.37) 

Explicit use of (3.37) and the resulting expressions for G(r) and D(r) are presented in 
Appendix C. 

Although the global radial volume flux is zero t h s  does not hold for the 
corresponding mass flow since separation of the phases takes place. The global radial 
mass flow, Q,, can be obtained by observing (see Appendix C) that the interior mass 
flux is one third of the volume flux and that the Ekman layer mass and volume fluxes 
are the same to lowest order. Thus, with JE and JI  representing order-one quantities 
of the Ekman layer and interior volume fluxes and since JE = - J I  

1 € 1  /3HWnr2a0 [rib -- ' 1  for I' rsh 

Q , = E ~ ( J  E +- i J I  ) = - E ~ J  3 I = [  , (3.38) 

1c1 pHWnr2ao [i- 1 1  for r 3 rsh 

where (3.21) has been used to eliminate a- and a& in the formula for J I  in Appendix C. 

3.3. First-order analysis of the density stratlJication 
With the flow field established, first-order corrections to the concentration field were 
considered mainly in order to verify the results from the numerical analysis. 
Corrections to the stratification that we considered originated in two different physical 
effects. First, the azimuthal motion of the mixture changes the effective centrifugal 
force on the particles; of the higher-order terms in the constitutive law for the relative 
velocity, (2.13), the Coriolis acceleration of the mixture is retained in the conservation 
equation for the particles. Thus, the rate at which separation occurs for the axially 
convected fluid elements changes. Secondly the secondary circulation of the mixture 
changes the axial convective transport of the particles which also affects the 
stratification. 

In characteristic form the conservation equation for the particles, including the first- 
order corrections, is 

d 2sp a(1 -.)Z 
&"=- w n + E ~ w l  p(a) 

a( 1 - a)Z 
sPr + E43u1. 

d 
dz w o + ~ 4 v I $ {  p(a) } --y = 

(3 .394 

(3.3 9 b) 

To obtain a solution correct to first order in Ei it is sufficient to evaluate the solution 
of (3.39a) on the zeroth-order expansion of the characteristic paths. Since the 
concentration to zeroth order, ao(z), is independent of r in the suspension region, a 
first-order correction to the characteristic paths would, except for a small correction of 
the shock position, give only second-order corrections to the concentration. The 
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procedure is simplified by the fact that separately in the regions r < r,, and r > r,, the 
vorticity of the azimuthal flow and the first-order vertical velocity are functions only 
of z.  Subsequently the separate solutions obtained in the regions inside and outside 
r = r,, are also functions only of z except for a radial region corresponding to those 
characteristics that appeared on both sides of r = r,,. The latter region continuously 
connects the two former, differently stratified, regions. 

One should note here that the flow within the free vertical shear layers at r = r,h is 
not considered here. Consideration of flow within these layers would give additional 
corrections to the concentration field of order Ei in the interconnecting region 
mentioned above. However, the complicated study of these layers to obtain a formally 
correct solution there is far beyond the purpose of this study. 

The position of the interface was also corrected to first order but the analysis is 
omitted here. Results of the analysis obtained from this section have been compared 
with the numerical solution (see figures 8 and 10). 

4. Asymptotic results 
The asymptotic results for the case of uniform axial flow for W = 0.7 are presented 

next. The inlet concentration was a, = 0.05 which gave ao(z = H )  = 0.23 and thus 
rsh = 0.47. 

In the region r < r,, the azimuthal velocity component is linear in the radial 
coordinate and the axial variation for T = W/h  = 0.2,2.0 is shown in figure 5.  Away 
from the Ekman layers the velocity distribution directly maps the density stratification 
according to (3.11). As the stratification is independent of r, changing the value of this 
parameter just results in a displacement of the profile towards more negative values 
with the interior shape intact. This shift of the velocity is required by the changed radial 
volume flux balance of the interior and the Ekman layers. For r = 0 (or equivalently 
l / h  = 0) the interior radial flow is negligible compared to the Ekman layer flow, so that 
the Ekman fluxes are of equal magnitudes but in opposite directions, outwards at the 
inlet and inwards at the outlet. For non-zero r the secondary inward interior flux, - EiW/h = Etr ,  must be compensated for by a net outward flow in the Ekman 
layers; the negative shift of the velocity at z = 0 thus reinforces the outward flow there 
whereas at z = H the flux is suppressed or even changes direction. For large values of 
T the suction effect on the Ekman layer at z = H completely blocks the flow in this 
layer. The outward flow is therefore concentrated in the Ekman layer at z = 0 where 
the changed boundary-layer structure due to axial injection allows increased radial 
mass transport. The magnitude of the azimuthal velocity therefore increases in a range 
of moderate T, whereas for larger values of r the increased mass transport in the 
Ekman layer is sustained by a larger relative transport efficiency with the azimuthal 
velocity approximately unchanged. 

The axial variation of the azimuthal velocity at r = 0.66 > rsh is shown in figure 6 .  
Above the shock in the homogeneous clear fluid the velocity is constant in contrast to 
the flow in the stratified mixture region. Owing to the large density increase across the 
interface, the resulting difference between the azimuthal edge velocities of the Ekman 
layers at the outlet and inlet is negative for r > rSh. For the case r = 0 or small, this 
requires the Ekman fluxes at the boundaries to be inwards at the inlet and outwards 
at the outlet which are in opposite directions compared to the fluxes in the region inside 
the vertical shear layers. For non-zero values of T and radial positions r > rsh  the 
volume flux balance is more complex as it also involves non-divergent contributions. 
The azimuthal velocity thus includes an irrotational part to allow such transports in the 
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FIGURE 5.  Azimuthal velocity profile versus the axial coordinate at r = 0.15 < rSh for r = 0.2 and 
2.0. Comparison of the analytical and numerical solutions. W = 0.7, E = 0.25 x a. = 0.05, 
p = 0.05. 
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FIGURE 6. Azimuthal velocity profile versus the axial coordinate at r = 0.66 > rSh for the same 
cases as in figure 5. Comparison of the analytical and numerical solutions. 

Ekman layers. Therefore, the shift of U/Y with r varies with the radial position but 
shows the same type of behaviour as that discussed for r < rSh. 

The secondary flow in the (r,z)-plane is responsible for the interior radial flow 
and the redistribution into the Ekman layers. Figure 7 shows a schematic of the 
Ekman layer fluxes, JE, and the interior secondary flow for the typical cases of r 4 1 
and T 2 1. Also indicated in figure 7 are the directions of the axial secondary velocity, 
wl, and of the vertical boundary layer fluxes, Jv, which are necessary to close the 
secondary flow in the meridional plane. For small values of r the interior radial flow 
is negligible compared to the Ekman layer fluxes and is therefore not shown at all in 
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FIGURE 7. Qualitative picture of secondary flow in a meridional plane for (a) r < 1 and (b) r 2 1. 

figure 7(a) .  Figure 7(b) shows the phase-averaged radial volume flux velocity versus 
the axial coordinate at two different radial positions: r < rSh and r > rsh. The increased 
magnitude with the axial coordinate reflects the response of the radial flow to the 
intensified swirl flow gradient. Although the radial ‘mixture’ velocity is negative the 
velocity of the heavy clear fluid phase is positive and an order of magnitude larger, as 
calculated from (3.8) and the definitions of the averaged velocities and of the relative 
velocity. 
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The axial secondary velocity versus z for r < rsh is discussed next. When the interior 
radial flow is negligible compared to the Ekman layer flow, r = W/h = 0, the 
secondary vertical velocity is independent of z ,  just communicating the opposite 
divergent Ekman-layer flows at the top and bottom. At larger values of r, the axial 
stretching of fluid elements required to redirect the convergent radial volume flow 
towards the Ekman layers accumulates as a vertical velocity difference between the top 
and bottom. For large values of r the flow is only into the lower Ekman layer as 
suction blocking of the top Ekman layer diminishes this velocity. At radial positions 
r > r,, the decreasing area of the radially projected mixture region changes the 
vertically integrated interior radial volume flow which is here divergent rather than 
convergent. The net vertical flow for r 2 1 is therefore out from the Ekman layers in 
this region as sketched in figure 7(b). Across the interface the jump of the inviscid 
vertical velocity component is required by mass conservation between the interior flows 
only since the Ekman layers there are non-divergent. 

5. Numerical simulation 
The numerical analysis used a slightly extended version of a code for solving the 

‘mixture model’ equations presented recently in a paper by Amberg & Ungarish 
(1993). They study the spin-up of a mixture from rest in a cylinder, which is a strongly 
nonlinear problem. In their case the small divergence of the mass-averaged velocity due 
to separation is neglected which can be justified since there the Rossby number is of 
order one and the secondary flow due to Ekman-layer circulation is an order of 
magnitude larger than the flow induced by separation. 

For the case studied in the present paper, the Rossby number is small and the flow 
is driven instead by the separation process itself. As the global mass transport due to 
separation is of the same order of magnitude as the induced secondary flow in the 
parameter regime considered, the mass flow divergence had to be retained in the code; 
explicitly 

Further details on the code, which uses a time-stepping procedure of a pressure 
correction scheme originally by van Kan (1986), are given by Amberg & Ungarish 
(1993). 

The program was started with the whole cylinder filled with a homogeneous mixture 
and was run through a smooth transient until a steady state was reached. Otherwise, 
the formulation for the numerical analysis followed mainly that in the second section 
of this paper, including the identical in- and outflow conditions for the velocity. The 
treatment of the clear fluid-suspension interface was different though. The shock was 
here captured by the code rather than fitted to the shock conditions (2.21a-e). A 
smooth variation of the concentration at the position of the interface thus resulted 
from artificially introduced diffusion terms in the conservation equation of the 
particles. The Ekman layers at the interface were therefore poorly reproduced. An 
important question to resolve was if this would have a large effect on the flow field in 
general owing to the interaction between the interior and the Ekman layers. The 
number of grid points used were in both cases 60 in the radial and 200 in the axial 
direction which appeared to be sufficient for numerical resolution of the various 
boundary layers at the present parameter settings. 

Two cases with different values of r were analysed and compared with the results of 
the asymptotic analysis. Identical parameter values in the two cases were the Ekman 
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FIGURE 8. Comparison between analytical and numerical solution of iso-concentration lines in a 
meridional plane; r=O.2, E = 0 . 2 5 ~ 1 0 - ~ ,  W=O.7, a,=0.05, p=0.05.  a=O.O5+ix0.01,  
i = O , I ,  ..., 17. 

number, E = 0.25 x lo-*, the particle Taylor number, /3 = 0.05, the non-dimensional 
injection velocity, w~~ = 0.035, the aspect ratio, H = 1 and the inlet concentration, 
a,, = 0.05. Equivalently W = win//3H = 0.7 which means that the interface and the 
concentration field will be approximately the same in both cases considering the result 
of the analytical solution. The two cases were distinguished by r= W/h = 0.2 and 
T = 2.0. For the values of the six independent parameters E, /3, H,  W, a,,, r given 
above, the corresponding values of h = 3.5,0.35 and the relative density difference 
E = -0.02857, -0.2857 for the two cases respectively were obtained from the 
definitions (3.29) and (3.32). The Rossby number of the flow, Ro = J E J ,  was thus a 
factor ten larger in the second case. 

The first case, r = 0.2, is presented in figures 8 and 9 and also figures 5 and 6. The 
stratification of the mixture is apparent in figure 8 which shows contours of constant 
concentration of both the numerical and the analytical solution. Away from the region 
of the clear fluid-suspension interface the two solutions are almost indistinguishable. 
Deviations appeared mainly due to the artificial smearing of the numerical solution 
around the shock. Figure 9 shows the numerical result for the azimuthal velocity in 
the form of isovelocity lines. The position of the shock is immediately recognized as the 
diagonal band of rapidly changing velocity in the right half of this graph. Above the 
interface the velocity is negative and more or less independent of z whereas below the 
interface it is positive and decreasing towards the inlet as an effect of the continuous 
stratification. The velocity change crossing the shock in the positive axial direction is 
thus negative, reflecting the rapid density increase there, whereas in the mixture the 
velocity increases as an effect of the reversed density change in that region. At smaller 
radii there is no clear fluid present and away from the Ekman layers the azimuthal 
velocity increases monotonically in the axial direction. However, the velocity is 
negative in most of the cylinder and changes to positive only rather close to the outlet. 
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FIGURE 9. Lines of constant azimuthal velocity in a meridional plane of the numerical solution 
for the same case as in figure 8 ;  r= 0.2, 0 = -0.024+ix0.004, i =  0, 1, ..., 13. 
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FIGURE 10. Comparison between analytical and numerical solution of iso-concentration lines in a 
meridional plane; r = 2 . 0 ,  E = 0 . 2 5 ~ 1 0 - ~ ,  W=O.7, cc,=O.O5, P = O . O S .  a=0.05+ix0.01, 
i =  0,1, ..., 18. 
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FIGURE 1 1 .  Lines of constant azimuthal velocity in a meridional plane of the numerical solution 
for the same case as in figure 10; r= 2.0. L' = -0.081+ix0.009, i = O , l ,  ..., 13. 

The adjustment to the no-slip conditions can be observed as Ekman layers at the in- 
and outlet and as a vertical shear layer at the vertical wall. A free vertical shear layer 
is also observed in the transition region between the differentially rotating fluid below 
the interface and in the inner part of the cylinder. An order of magnitude estimate of 
the thickness of the vertical layers would be N Ei = 0.07 which seems to be roughly in 
agreement with those in the graph. Comparisons of the numerical solution and a 
vertically uniformly valid composite solution of the interior and boundary layer 
solutions of the asymptotic analysis are shown by the upper curves in figures 5 and 6 
for r = 0.15 and 0.66 (where for comparison rSh z 0.47). The calculation of the 
analytical velocity profile in the interior according to (3.1 1) was here evaluated with the 
concentration field corrected to first order in Ei. The agreement is generally very good. 
For r = 0.15 there is a small shift of the analytical curve to smaller negative values of 
zi whereas the slope is more or less identical. At r = 0.66 the curves collapse everywhere 
except in the transition region of the shock where no Ekman layer is present in the 
numerical solution due to the artificial smearing of the concentration field. 

The second case, T = 2.0, is presented in figures 10 and 11 and also figures 5 and 6. 
Concentration contours are shown in figure 10. As expected the graph is similar to the 
first case. However, radial variations also appear in the mixture region away from the 
interface. Following the flow from the inlet a concentration difference develops 
between the inner part of the cylinder and the region below the interface. The transition 
between these two differentially stratified areas appears as a smooth radial density 
gradient. The corrections added to the analytical solution due to the secondary 
circulation and the modified centrifugal force on the particles seem to catch the basic 
features of the numerical solution, including the width of the transition region. The 
azimuthal velocity is presented in figure 11. The magnitude of the azimuthal velocity 
is now larger and in the negative azimuthal direction in most of the cylinder except for 
a small region in the lower right corner of the graph in figure 11. Generally the larger 
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magnitude of v is expected in order to allow the Ekman layer flows to compensate for 
the increased mass flux in the core. Owing to the effect of axial convection, the Ekman 
layers at the in and outlet are now of completely different character. The Ekman layer 
at the inlet is thicker, with clear oscillations whereas at the outlet the boundary layer- 
thickness is definitely smaller. This is also clear from the lower curves in figures 5 and 
6 which show a comparison of the azimuthal velocity profiles between the analytical 
and numerical solutions at r = 0.15 and 0.66 for the second case. As could be expected 
for a larger value of Ro = 1 ~ 1  the differences between the analytical and numerical 
solutions are slightly larger than in the first case. The agreement appears closer at r = 
0.66 > rSh than at r = 0.15 < rsh which might be surprising since the secondary Ekman 
layer flux balance is more complex in the outer region and the numerical solution does 
not reproduce the Ekman layers at the clear fluid-suspension interface. However, if a 
relative measure of the discrepancy is used the agreement is slightly closer at r = 0.15. 

6. Conclusions 
We have considered continuous centrifugal separation of a two-phase mixture 

flowing axially through a circular cylinder. An approximate analytical solution valid 
for asymptotically small values of the Ekman and Rossby numbers has been presented 
and compared with the results from a numerical computation. 

Separation of the phases manifested itself as both continuous and discontinuous 
stratifications in the cylinder. For light particles heavy clear fluid appeared in a region 
adjacent to the outer rim of the cylinder on top of the lighter mixture. The shape of the 
interface separating the two fluid regions reflected the trajectory of an axially advected, 
sedimenting particle in the mixture originating at the outer rim of the inlet. Within the 
mixture region itself the density decreased continuously in the axial direction as an 
effect of the gradual packing of (light) particles in the axially advected mixture. For a 
uniform axial inlet velocity profile the density gradient within the mixture was 
approximately aligned with the rotation axis in the parameter regime considered. 

A clear physical picture of the flow field was obtained from the asymptotic analysis. 
In analogy with thermal winds in the Earth’s atmosphere buoyancy from the 
stratifications in the cylinder, balanced by the Coriolis acceleration, induced an 
azimuthal swirl velocity of the fluid. The positive density jump at the clear 
fluid-suspension interface thus induced a negative azimuthal velocity jump and the 
downward density gradient in the mixture required a positive gradient of the azimuthal 
velocity. Ekman layers appeared at the horizontal in- and outlets where no-slip 
conditions were imposed for the tangential velocity components. The radial mass fluxes 
in the Ekman layers were crucially dependent on the ratio of the axial velocity and the 
Ekman-layer diffusion velocity, f = w~,J(Qv$. It was shown that for increasing 
values of f the relative mass transport efficiency increased at Ekman layers with 
injection of fluid whereas suction of fluid had the opposite effect. 

Secondary circulations in meridional planes of the inviscid interior appeared due to 
both the separation and the Ekman-layer pumping. An inward radial mass flow, - E i f ,  compensated the total angular momentum of a mixture fluid element for the 
axially increasing azimuthal velocity through the cylinder. This radial flow forced fluid 
towards the horizontal boundaries where fluid sucked into the Ekman layers was 
redirected outwards. The outward phase-averaged mass transport of the separation 
process thus appeared only within the Ekman layers. 

To obtain the net outward Ekman-layer flux necessary to balance the secondary 
radial interior flow, i.e. to fulfil the global volumeflux requirements, a retrograde 
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intensification of the azimuthal velocity was required for increasing values of r. Thus, 
at the bottom Ekman layer, where fluid was injected from the boundary, an increased 
outward mass flux was allowed for increasing values of this parameter whereas at the 
top boundary suction of fluid diminished the mass flux in the Ekman layer. 

The numerical computation qualitatively confirmed the physical picture described 
above. Typical for the numerical solution was a small departure from a strictly axial 
stratification. It was found that this could be explained by the presence of the 
secondary circulation and the non-uniform effective centrifugal force on the particles 
due to the flow in the dynamically different regions of the mixture core and the mixture 
below the clear fluid region. Two cases were compared with the results from the 
asymptotic analysis with r = 0.2 and r = 2.0 respectively, which confirmed the crucial 
dependence of the solution on r. The quantitative agreement away from the vertical 
shear layers was very good in both cases, except at the position of the clear 
fluid--suspension interface where the kinematic shock of the asymptotic analysis was 
smeared out in the numerical solution to a continuous variation of the particle 
concentration by the introduction of artificial diffusion of particles. Therefore no true 
Ekman layers were observed in the numerical solution at the interface. Though the 
Ekman-layer flux balance was found to be very important in the asymptotic analysis, 
the lack of these particular boundary layers was of no consequence for the good 
agreement away from the interface. In all, the numerical results gave confidence in 
further use of the code. 

In summary the most important results obtained were : 
(i) an analytical solution based on ‘mixture theory’ of a canonical flow case for 

(ii) a linear Ekman-layer solution for boundaries with axial injection or suction; 
(iii) a successful verification of a numerical code for mixture theory including the 

effects of phase-averaged mass flow divergence which are typical for centrifugally 
separating mixtures. 

An unanswered question is the stability properties of the flow. The Ekman layers 
with injection at the boundary are likely to be more unstable than ordinary Ekman 
layers. There is also a potential for baroclinic instability of the azimuthal flow in the 
stratified mixture, a topic which was not considered in this work. 

continuous separation ; 

Appendix A. The Ekman-layer solution 
We consider Ekman-layer flow at a surface z = Z(r), which could represent either of 

the horizontal boundaries at z = 0 and z = H or the position of the kinematic shock 
at z = C(r), with an axial flow injected at the surface according to the inviscid outer 
flow. Let the upward pointing unit normal from the surface be I and let the stretched 
boundary-layer coordinate along this normal be 6 where the non-dimensional distance 
from the surface is EiC. At the Ekman layer at z = 0 and at the upper side of the shock 
at z = Z(r) we thus have 6 > 0 with injection of fluid at the surface whereas at z = H 
and on the lower side of the shock we have 6 < 0 and suction of fluid. The boundary- 
layer solution (q,,a,,P,) is expressed in terms of a correction to the outer inviscid 
flow: 

where (q, a, P) is the inviscid outer solution and (qi, ai, 4)  is the inner boundary-layer 
correction. It follows from evaluation of the rate of change of the particle volume 
fraction along the short characteristic path within the Ekman layer that the boundary- 
layer correction to the concentration is small, ad = O(Ei), i.e. of the order of the 

q R  = q ( r 9  -k qi(r, 51, aE = a(r, z, $- 9, PE = p(r) -k 9, (A 
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boundary-layer thickness. The equations for momentum balance and continuity of the 
mixture to zeroth order after subtracting the corresponding inviscid equations then 
vield 

a a a 2  
cl. (qo+ + qf) - qf + 2e, x qf = - I -  l't + p(a0,) - q:, 

- ac ac - aT 
a 
-r.q; = 0, 
ac 

where subscript 
z = Z(r). Since the boundary-layer corrections approach zero as 151 + 00 we obtain 

denotes evaluation at the upper or lower side of the surface 

I.qf = 0. (A 4)  
The zeroth-order boundary-layer correction for the pressure is also zero. The first- 
order correction Pi' that appears in (A2) could be eliminated using (A4). For 
convenience, with i = 2/ - 1, we define the complex vector 

to represent the velocity components tangential to the surface, which by (A 2) yield 
Qi = I x  q:-iq! (A 5 )  

with the outer inviscid solution substituted according to (3.10) and (3.13). The second 
term in (A6) is due to the axial flow through the boundary layer and represents 
convection of tangential momentum in the normal direction. The strength of this 
convection is given by r which in dimensional quantities can be written 

which is the ratio of the injection velocity and the Ekman-layer viscous diffusion 
velocity. The general solution to (A 6) is 

r = w;%(r)/(a*v,*)t, (A 7) 

where the upper/lower index or sign holds if 5 > O / c  < 0. y is a complex function that 
is defined for brevity as 

y ( x ;  I )  = -+xZ.e,+(l -i)(I.e,+i(Z.e,)2X2/8)t. (A 9) 
At 5 = 0, i.e. at the surface in question, the sum of the interior velocity and the 
boundary-layer correction have to equal the actual fluid velocity at the surface, u say, 
so that 

U+ - = -[Ix(qO,-u)-i(q0,-u)], - - 

which completes the zeroth-order solution. 
To first order in Et the Ekman-layer continuity equation implies 

a 
- I .  q; + I .  v x ( I  x qf) = 0. ac 

On substituting the Ekman-layer solution (A 8), (A 1 1 )  can be integrated to give 

from which the Ekman-layer pumping velocities are obtained for <-to. 
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Appendix B. Derivation of compatibility conditions 

Ekman layers at the horizontal boundaries which requires 
We consider first matching of the outer inviscid solution to the inner solution of the 

w(z = O/H) + Wi({  = 0) = Win.  

wl(z = O/H)+w,1([ = 0) = 0. 

(B 1) 

(B 2) 

As for zeroth order wo = win we obtain to first order 

It then follows from (B 2), (A 12), (A 8) and (A 10) with I = e, that 

ez -q i ( z  = O/H) = w:([ = 0) 

[e, x (q' - u) - i (qo - u)] (,u,,,);/y (x- , (B 3) 
(P0,HP' z=O/H 

where u = wine,. Evaluation of (B 3) directly yields (3.33) and (3.34). 
At the clear fluid-suspension interface the compatibility relation for the inviscid 

mass-averaged velocity is derived from the first-order expansion for the shock 
condition (2.21n. With (3.13) and (3.29), (2.21n to first order gives 

(B 4) 
W 
h 

[ql n] t  + [q: - n]? = - s - n .  e,[ao]l'. 

For the inviscid solution in the first term of (B 4) we get, with (2.20), 

[q'-n]T = n.e,([w']i--Z'(r) [u']'). (B 5 )  

The first-order radial component is taken from (3.31 b) and the difference in (B 5)  
rewritten with help of (3.18) which gives 

(B 6) 
W 
2h 

,Y(r)[ul]? = -s-[a"!. 

For the second term in (B 4) the first-order boundary-layer corrections on both sides 
of the shock are obtained from (A 12) at { = 0. The integration constants U ,  are then 
chosen such that the velocity and shear stresses tangential to the interface of the zeroth- 
order interior solutions are continuous there according to (2.21 a) and (2.21 e). The 
Ekman pumping in the direction normal to the shock then yields 

The final expression (3.36), quantifying the jump of the first-order inviscid vertical 
velocity component across the shock, is obtained after substitution of (B 7) and (B 5)  
with (B 6) into (B 4). 

Appendix C. Expressions for the functions G(r) and D(r) 

contributions from the inviscid interior and the Ekman layers respectively : 
The integral of the volume flux requirement (3.37) can be subdivided into the 

Jr = Ei27cr (Jl"j: dz + e8 x In d{ = 0, 1 
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where summation is applied over all the Ekman layers present at the radial position in 
question. For the interior contribution to lowest order the integral yields 

where (2.Q (3.15a) and (3.26) are used. Integration gives, with s = - 1, 

For the various boundary layers we obtain 

w o + -  W W 
JE(z = C(r)) = - m - [ u  1- - -.snr2-aa-(r) = n-a,,, 

h 2h 2h 

where subscripts 0 and H denote evaluation with the same argument as used in (3.33) 
and (3.34) respectively. It can be observed that JE(z = Z(r)) is non-divergent, from 
which it follows that D+ = D-. The full expressions for G(r) and D(r) obtained from 
the boundary conditions and the volume flux requirements are given below. 

The functions appearing in the expressions for the inviscid asymptotic solution are 

where 

(C 12)-(C 14) 

and where a,, is the inlet concentration, aH = ao(z = H )  and y is defined by (A 9) in 
Appendix A. 
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